Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biosens Bioelectron ; 236: 115362, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2316354

RESUMEN

Pandemics as the one we are currently facing, where fast-spreading viruses present a threat to humanity, call for simple and reliable methods to perform early diagnosis, enabling detection of very low pathogen loads even before symptoms start showing in the host. So far, standard polymerase chain reaction (PCR) is the most reliable method for doing so, but it is rather slow and needs specialized reagents and trained personnel to operate it. Additionally, it is expensive and not easily accessible. Therefore, developing miniaturized and portable sensors which perform early detection of pathogens with high reliability is necessary to not only prevent the spreading of the disease but also to monitor the effectiveness of the developed vaccines and the appearance of new pathogenic variants. Thus, in this work we develop a sensitive microfluidic impedance biosensor for the direct detection of SARS-CoV-2, towards a mobile point-of-care (POC) platform. The operational parameters are optimized with the aid of design-of-experiment (DoE), for an accurate detection of the viral antigens using electrochemical impedance spectroscopy (EIS). We perform the biodetection of buffer samples spiked with fM concentration levels and validate the biosensor in a clinical context of relevance by analyzing 15 real patient samples up to a Ct value (cycle threshold) of 27. Finally, we demonstrate the versatility of the developed platform using different settings, including a small portable potentiostat, using multiple channels for self-validation, as well as with single biosensors for a smartphone-based readout. This work contributes to the rapid and reliable diagnostics of COVID-19 and can be extended to other infectious diseases, allowing the monitoring of viral load in vaccinated and unvaccinated people to anticipate a potential relapse of the disease.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Microfluídica , Impedancia Eléctrica , Reproducibilidad de los Resultados , Técnicas Biosensibles/métodos
2.
Virus Evol ; 8(1): veac010, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1831359

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution plays a significant role in shaping the dynamics of the coronavirus disease 2019 pandemic. To monitor the evolution of SARS-CoV-2 variants, through international collaborations, we performed genomic epidemiology analyses on a weekly basis with SARS-CoV-2 samples collected from a border region between Germany, Poland, and the Czech Republic in a global background. For identified virus mutant variants, active viruses were isolated and functional evaluations were performed to test their replication fitness and neutralization sensitivity against vaccine-elicited serum neutralizing antibodies. Thereby we identified a new B.1.1.7 sub-lineage carrying additional mutations of nucleoprotein G204P and open-reading-frame-8 K68stop. Of note, this B.1.1.7 sub-lineage is the predominant B.1.1.7 variant in several European countries such as Czech Republic, Austria, and Slovakia. The earliest samples belonging to this sub-lineage were detected in November 2020 in a few countries in the European continent, but not in the UK. We have also detected its further evolution with extra spike mutations D138Y and A701V, which are signature mutations shared with the Gamma and Beta variants, respectively. Antibody neutralization assay of virus variant isolations has revealed that the variant with extra spike mutations is 3.2-fold less sensitive to vaccine-elicited antibodies as compared to the other B.1.1.7 variants tested, indicating potential for immune evasion, but it also exhibited reduced replication fitness, suggesting lower transmissibility. The wide spread of this B.1.1.7 sub-lineage was related to the pandemic waves in early 2021 in various European countries. These findings about the emergence, spread, evolution, infection, and transmission abilities of this B.1.1.7 sub-lineage add to our understanding about the pandemic development in Europe and highlight the importance of international collaboration on virus mutant surveillance.

3.
Emerg Microbes Infect ; 11(1): 1293-1307, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1788441

RESUMEN

N-chlorotaurine (NCT) a long-lived oxidant generated by leukocytes, can be synthesized chemically and applied topically as an anti-infective to different body sites, including the lung via inhalation. Here, we demonstrate the activity of NCT against viruses causing acute respiratory tract infections, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza viruses, and respiratory syncytial virus (RSV). Virucidal activity of NCT was tested in plaque assays, confirmed by RT-qPCR assays. Attack on virus proteins was investigated by mass spectrometry. NCT revealed broad virucidal activity against all viruses tested at 37°C and pH 7. A significant reduction in infectious particles of SARS-CoV-2 isolates from early 2020 by 1 log10 was detected after 15 min of incubation in 1% NCT. Proteinaceous material simulating body fluids enhanced this activity by transchlorination mechanisms (1 -2 log10 reduction within 1-10 min). Tested SARS-CoV-2 variants B.1.1.7 (Alpha) und B.1.351 (Beta) showed a similar susceptibility. Influenza virus infectious particles were reduced by 3 log10 (H3N2) to 5 log10 (H1N1pdm), RSV by 4 log10 within a few min. Mass spectrometry of NCT-treated SARS-CoV-2 spike protein and 3C-like protease, influenza virus haemagglutinin and neuraminidase, and RSV fusion glycoprotein disclosed multiple sites of chlorination and oxidation as the molecular mechanism of action. Application of 1.0% NCT as a prophylactic and therapeutic strategy against acute viral respiratory tract infections deserves comprehensive clinical investigation.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Infecciones del Sistema Respiratorio , Humanos , Subtipo H3N2 del Virus de la Influenza A , Virus Sincitiales Respiratorios , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Taurina/análogos & derivados
4.
Stem Cell Rev Rep ; 18(5): 1809-1821, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1704701

RESUMEN

BACKGROUND: SARS-CoV-2 infection causes acute respiratory distress, which may progress to multiorgan failure and death. Severe COVID-19 disease is accompanied by reduced erythrocyte turnover, low hemoglobin levels along with increased total bilirubin and ferritin serum concentrations. Moreover, expansion of erythroid progenitors in peripheral blood together with hypoxia, anemia, and coagulopathies highly correlates with severity and mortality. We demonstrate that SARS-CoV-2 directly infects erythroid precursor cells, impairs hemoglobin homeostasis and aggravates COVID-19 disease. METHODS: Erythroid precursor cells derived from peripheral CD34+ blood stem cells of healthy donors were infected in vitro with SARS-CoV-2 alpha variant and differentiated into red blood cells (RBCs). Hemoglobin and iron metabolism in hospitalized COVID-19 patients and controls were analyzed in plasma-depleted whole blood samples. Raman trapping spectroscopy rapidly identified diseased cells. RESULTS: RBC precursors express ACE2 receptor and CD147 at day 5 of differentiation, which makes them susceptible to SARS-CoV-2 infection. qPCR analysis of differentiated RBCs revealed increased HAMP mRNA expression levels, encoding for hepcidin, which inhibits iron uptake. COVID-19 patients showed impaired hemoglobin biosynthesis, enhanced formation of zinc-protoporphyrine IX, heme-CO2, and CO-hemoglobin as well as degradation of Fe-heme. Moreover, significant iron dysmetablolism with high serum ferritin and low serum iron and transferrin levels occurred, explaining disturbances of oxygen-binding capacity in severely ill COVID-19 patients. CONCLUSIONS: Our data identify RBC precursors as a direct target of SARS-CoV-2 and suggest that SARS-CoV-2 induced dysregulation in hemoglobin- and iron-metabolism contributes to the severe systemic course of COVID-19. This opens the door for new diagnostic and therapeutic strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Eritrocitos/metabolismo , Ferritinas , Hemo/metabolismo , Hemoglobinas/metabolismo , Humanos , Hierro/metabolismo
6.
Epidemiol Infect ; 149: e177, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1333852

RESUMEN

In Germany, Eastern regions had a mild first wave of coronavirus disease 2019 (COVID-19) from March to May 2020, but were badly hit by a second wave later in autumn and winter. It is unknown how the second wave was initiated and developed in Eastern Germany where the number of COVID-19 cases was close to zero in June and July 2020. We used genomic epidemiology to investigate the dynamic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage development across the first and second waves in Eastern Germany. With detailed phylogenetic analyses we could show that SARS-CoV-2 lineages prevalent in the first and second waves in Eastern Germany were different, with several new variants including four predominant lineages in the second wave, having been introduced into Eastern Germany between August and October 2020. The results indicate that the major driving force behind the second wave was the introduction of new variants.


Asunto(s)
COVID-19/epidemiología , Genoma Viral , Pandemias , SARS-CoV-2/genética , COVID-19/virología , Alemania/epidemiología , Humanos , Filogenia , SARS-CoV-2/clasificación
7.
Sci Adv ; 7(1)2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1066783

RESUMEN

Here, we report the topology-matched design of heteromultivalent nanostructures as potent and broad-spectrum virus entry inhibitors based on the host cell membrane. Initially, we investigate the virus binding dynamics to validate the better binding performance of the heteromultivalent moieties as compared to homomultivalent ones. The heteromultivalent binding moieties are transferred to nanostructures with a bowl-like shape matching the viral spherical surface. Unlike the conventional homomultivalent inhibitors, the heteromultivalent ones exhibit a half maximal inhibitory concentration of 32.4 ± 13.7 µg/ml due to the synergistic multivalent effects and the topology-matched shape. At a dose without causing cellular toxicity, >99.99% reduction of virus propagation has been achieved. Since multiple binding sites have also been identified on the S protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), we envision that the use of heteromultivalent nanostructures may also be applied to develop a potent inhibitor to prevent coronavirus infection.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/virología , Nanopartículas/química , Neuraminidasa/química , Animales , Antivirales/farmacología , Sitios de Unión , Membrana Celular/metabolismo , Perros , Membrana Eritrocítica/virología , Humanos , Virus de la Influenza A/fisiología , Células de Riñón Canino Madin Darby , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Virión , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
8.
Nano Lett ; 20(7): 5367-5375, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: covidwho-628240

RESUMEN

Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonstrated that nanostructures with spikes between 5 and 10 nm bind significantly better to virions than smooth nanoparticles, due to the short spikes inserting into the gaps of glycoproteins of the IAV virion. Furthermore, an erythrocyte membrane (EM) was coated to target the IAV, and the obtained EM-coated nanostructures could efficiently prevent IAV virion binding to the cells and inhibit subsequent infection. In a postinfection study, the EM-coated nanostructures reduced >99.9% virus replication at the cellular nontoxic dosage. We predict that such a combination of geometry-matching topography and cellular membrane coating will also push forward the development of nanoinhibitors for other virus strains, including SARS-CoV-2.


Asunto(s)
Betacoronavirus/ultraestructura , Infecciones por Coronavirus/virología , Nanoestructuras/ultraestructura , Neumonía Viral/virología , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Sitios de Unión , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Diseño de Fármacos , Humanos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/ultraestructura , Microscopía Electrónica , Modelos Biológicos , Nanotecnología , Pandemias , Neumonía Viral/tratamiento farmacológico , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Internalización del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA